

Sardar Patel College of Engineering

(Govt. Aided Autonomous Institute Affiliated to University of Mumbai)

Re-examination [January 2020] Academic Year 2019 - 20 [First Half]

Program: B. Tech. Electrical Engineering

Course: Digital Signal Processing Course Code: PE -BTE501

Semester: V Date: 13th Jan 2020 **Total Points: 100**

Note: Solve any FIVE questions of the following. Write answers of all sub-questions together.

CO: Course Outcomes

BL: Bloom's Taxonomy Level

PI: Performance Indicator

-	0.	Question	Points	CO	BL	PI
1		Design an analog lowpass filter using Butterworth, Chebyshev and inverse Chebyshev approximation to meet following specifications: $A_p \le 1 \ dB$ for $\Omega_p \le 4 \ rad/s$ and $A_s \ge 20 \ dB$ for $\Omega_s \ge 8 \ rad/s$.	20	4	6	1.6.1
2	A	Design a 4 th order FIR filter, using rectangular window function, to approximate an ideal low-pass filter with passband gain of unity, cut-off frequency of 850 Hz and working at a sampling frequency of 5000 Hz.	10	4	6	1.5.1
	В	Design a linear phase FIR highpass filter using Hanning window function, for the specifications given below: Stopband edge = 2 kHz, Stopband attenuation ≥ 40 dB, Passband edge = 9.5 kHz, Passband attenuation < 1 dB, Sampling frequency = 25 kHz.	10	4	6	1.5.1
3	A	Determine 8-point DFT of the sequence $x(n) = \{1,2,4,8,16,32,64,128\}$ using radix-2 DIT FFT algorithm.	10	3	3	2.5.1
	В	Determine IDFT of the following sequence using radix-2 DIT-FFT algorithm: $X(k) = \begin{cases} 36, -4 + j9.656, -4 + j4, -4 + j1.656, -4, \\ -4 - j1.656, -4 - j4, -4 - j9.656 \end{cases}$	10	3	3	2.5.1
4	A	For the sequences $x_1(n) = \{1,1,2,2\}$ and $x_2(n) = \{1,2,3,4\}$, determine: i. linear convolution ii. circular periodic convolution using DFT / IDFT.	02 08	3	3	1.5.1

	В	Discuss symmetry properties of DFT for a signal with following cases: i. real (even and odd) and ii. purely imaginary (even and odd).	10	2	3	1.5.1
5	A	Determine 8-point DFT of the sequence $x(n) = \begin{cases} 1 & 0 \le n \le 3 \\ 0 & 4 \le n \le 7 \end{cases}$. Using DFT properties only determine, DFT of, $x_1(n) = \begin{cases} 1 & n = 0 \\ 0 & 1 \le n \le 4; \\ 1 & 5 \le n \le 7 \end{cases}$ $x_2(n) = \begin{cases} 0 & 0 \le n \le 1 \\ 1 & 2 \le n \le 5; \\ 0 & 6 \le n \le 7 \end{cases}$				
The state of the s	В	Determine linear convolution of the following signals using convolution property of DTFT. $x_1(n) = nu(n)$ and $x_2(n) = (2)^n u(n-1)$.		1		
6	A	Derive the bilinear z-transformation mapping of s-plane poles and zeros into z-plane poles and zeros. Discuss the advantages and drawbacks of this mapping.	10	4	6	1.6.1
	B	transfer function:	10	4	6	1.6.1
		$H(s) = \frac{s^2 + 1}{s^2 + s + 1}$ Determine the transfer function of an equivalent digital filter using BLT. Assume a notch frequency of 60 Hz and sampling frequency of 960 Hz	Annahama magamatah m			
7	A	Using frequency sampling method calculate the coefficients and draw realization diagram of a linear-phase FIR filter of length 15 which has a symmetric unit sample response and a frequency response that satisfies the condition, $H\left(\frac{2\pi k}{15}\right) = \begin{cases} 1, & k = 0,1,2,3\\ 0.4, & k = 4\\ 0, & k = 5,6,7 \end{cases}$	10	4	3	1.5.1
	В	A causal system is represented by the following difference equation. $y(n) + \frac{1}{4}y(n-1) = x(n) + \frac{1}{2}x(n-1)$ Determine the system transfer function, impulse response and frequency response of the system. Show the magnitude and phase functions clearly.	10	2	3	1.5.1

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

REEXAMINATION JAN. 2020 (OLD COURSE)

Program: ELECTRICAL ENGG.

Course Code: BTE306

Course Name: POWER ELECTRONICS

Duration: 3 HOURS

Maximum Points: 100

Semester: V

Instructions:

- Solve any five questions
- Assume suitable data if necessary and justify the same

SN	Questions	Po		В	PI
		int s	O	L	
Q1) a)	What are the different operating regions of Silicon Controlled Rectifier (SCR)? Explain with neat (V-I characteristic) diagram.	8	2	3	1.3.1
b)	Explain the application of inverter in power factor improvement, with circuit diagram.	8	2	3	1.3.1
c)	What is natural or line commutation in rectifiers?	4	4	3	1.3.1
Q2) a)	Write short note on any of the <u>fully controlled</u> power electronics switch using following points (a) Principle of operation, (b) characteristics, (c) rating (d) applications	12	2	2	1.3.1
b)	Discuss the working of a single phase AC voltage controller with R-L load when its firing angle is more than the load power factor angle. Illustrate with waveforms.	8	4	2	1.3.1
Q3) a)	Derive expression of average dc voltage for the three phase full wave controlled rectifier. Assume load current is continuous & constant.	10	2	2	
b)	Explain the effect of source side inductance on three phase and single phase rectifier output.	10	2	2	

Q4) Draw circuit diagram (3M), output phase voltages (3M), 20 4 3 1.3.1 output line voltages (3M), output line currents (3M) and input voltage (2M) of voltage source inverter with star connected R load when each semiconductor switch conducts for 180°. Derive the phase and line voltages by considering load R=1 Ω (6M). (use graph paper for input and output voltage waveforms, line current waveforms should be drawn on answer sheet) Q5) Draw input voltage, output voltage, input current and output current waveforms for the following circuits. a) Single phase full wave bridge controlled rectifier with 1.3.1 3 2 α=120° for "RLE" continuous current load and derive average output voltage b) Single phase full wave bridge controlled rectifier with 2 RLE load, $\alpha > \theta$ and $\beta < \pi$ 4 c) Single phase full bridge type inverter with "L" load d) Single phase half wave controlled rectifier with 'R-L' load and freewheeling diode connected across load, 2 derive average output voltage Q6) With the help of input voltage, output voltage, voltage across 14 3 3 1.3.1 inductor, voltage across capacitor, capacitor current, inductor a) current, load current waveforms and assumptions made, derive critical L and critical C of the DC-DC Buck regulator. 4 2 1.3.1 b) Compare CSI and VSI. 6 Q7) Why filters are required when power electronics devices are 8 1.3.1 used? Which filters are used? a) Write short note on 'Sinusoidal triangular pulse width 12 4 3 1.3.1 b) modulation scheme for inverter firing.

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai – 400058. Re- Exam January 2020

Max. Marks:100

Class: T.Y. B.Tech. (Electrical)

Semester: V

Name of the Course: Electromagnetic fields and waves

Duration: 3.00 Hrs

Program: Electrical Engineering

Course Code: PC-BTE501

Instructions:

1. Question No 1 is compulsory.

Attempt any four questions out of remaining six. 2.

Draw neat diagrams 3.

Assume suitable data if necessary 4.

Que. No		Points	СО	BL
Q1 (a)	Derive an expression for magnetic field intensity due to a linear conductor of infinite length carrying current I at a distance, point P. Assume R to be the distance between conductor and point P. Use Biot-Savart's Law.	10	1	L2
(b)	Explain the term "Electrical field intensity". Derive expression for electric field intensity for an infinite line of charge	10	1	L2
Q.2(a)	Use the spherical coordinates system to find the area of the strip $\alpha \le \theta \le \beta$ on spherical radius 'a'. What results when $\alpha = 0$ and $\beta = \pi$?	05	01	L3
(b)	Current in the inner and outer conductors of fig.1 are uniformly distributed. Use Ampere circuital law to derive expression of magnetic field intensity (H) for $b \le r \le c$	05	01	L3
(c)	Given, $\overline{D} = D_m Cos(\omega t + \beta z)\overline{a_x}$ in free space. Find E, B and H. Sketch E and H at t=0	05	02	L3
(d)	Derive the work done in moving a point charge in an electric field.	05	01	L2
Q3(a)	Derive Poisson's and Laplace's equation.	08	02	L2
(b)	Identical charges of $Q(C)$ are located at the eight corners of a cube with side of l meter show that coulombs force on each charge has magnitude $\left(\frac{3.29Q^2}{4\pi\epsilon_0l^2}\right)N$.	06	01	L3
(c)	Explain the following term: i) Cylindrical co-ordinate system ii) Spherical co-ordinate system	06	01	L2

Q4 (a)	Use Ampere's law to obtain H due to an infinitely long straight	05	02	L2
(b)	filament of current I. Find the force on straight conductor of length 0.30 m carrying a	05	01	L3
(0)	current of 5A in the $-\bar{a}_z$ direction where the field is 3.50 x			
(c)	Find the work done in moving a point charge $Q = -20 \mu\text{C}$ from origin to $(4,2,0)$ m in the field	05	01	L3
	$E = 2(x + 4y)a_z + 8xa_y (V/m)$			
(d)	Along the path $x^2 = 8y$. Explain FEM method. How to find capacitance of two parallel plate capacitor using FEM technique?	05	03	L2
Q5 (a)	The volume in cylindrical coordinates between $r = 2m$ and $r = 4m$ contains a uniform charge density $\binom{C}{m^2}$. Use Gauss's law to	05	01	L3
(b)	find D in all regions. Starting with Ampere's circuital law, derive Maxwell's equation in integral form. Obtain the corresponding relation by applying the Stoke's theorem.	10	02	L2
(c)	Find the voltage across each dielectric in the capacitor shown in Fig. 2 when the applied voltage is 400 V.	05	02	L3
	Eo → 60 71 mm Fig. 2			
Q.6(a)	State Maxwell's equation for static fields. Explain how they are modified for time varying electric and magnetic fields.	10	1,2	L2
(b)	Show that $\bar{A}. \bar{B} = A_x B_x + A_y B_y + A_z B_z$	05	01	L2
(c)	Find the capacitance of co-axial cable of length 'l', where inner conductor has radius 'a' and the outer conductor has radius 'b' (refer fig. 3)	05	02	L3
	Fig.: 3	10	0.1	1.2
Q.7 (a)	Explain in detail relationship between E and V. Given a potential $V = 3x^2 + 4y^2$ V. Find the energy stored in the volume described by $0 \le x \le 2m$, $0 \le y \le 2m$ and $0 \le z \le 2m$	10	01	L3
(b)	Derive an expression for potential energy stored in static electric field of n point charges.	10	01	L2

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

RE - EXAMINATION ODD SEM JANUARY 2020

Program: UG

Duration: 3 Hour

Course Code: PC-BTE504

Maximum Points: 100

Course Name: Power System - I

Semester: V

Notes: 1. Question No. 1 is compulsory. Solve any FOUR from remaining SIX Questions.

2. Answer to all sub questions should be grouped together.

2. Assume suitable data wherever required and justify the same.

Q.No.	Questions	Points	со	BL	PI
1 (a)	Explain series and shunt compensation of transmission lines.	02+02	1		
1 (b)	Define following terms: Connected load; maximum demand; demand factor; load factor; diversity factor.	05	1		
1 (c)	What are the advantages of per unit system?	03	2		
1 (d)	Define soil resistivity. Hence explain the method for measurement of earth resistance.	04	5	L-1	1.3.1
1 (e)	What is the necessity of using symmetrical components in analysis of unbalanced circuits? Show that symmetrical component transformation is power invariant.	01+03	4		

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

RE - EXAMINATION

ODD SEM JANUARY 2020

2 (a)	Derive the inductance of two wire $(1-\Phi)$ transmission line.	10			
2 (b)	Derive the capacitance of a 3-phase unsymmetrically spaced transmission line.	10	2	L-2	1.3.1
3 (a)	Derive A, B, C, D parameters of medium transmission line for nominal T representation. Draw phasor diagram.	08+02	3	L-2	1.3.1
3 (b)	Determine the efficiency and regulation of a 3-phase, 100 km, 50 Hz transmission line delivering 20 MW at a p.f. of 0.8 lagging and 66kV to a balanced load. The conductors are of copper, each having resistance 0.1Ω per km, 1.5cm outside diameter, spaced equilaterally 2 meters between centres. Use nominal π (pi) method for calculation.	10	3	L-3	1.3.1
4 (a)	Explain the potential distribution over a string of suspension insulators. Hence calculate the string efficiency and voltage distribution across five disc insulator with total operating voltage of 66kV line to ground. Assume factor <i>m</i> =5.		2	L-2	1.3.1
4(b)	Draw the P.U. reactance diagram for the power system shown below. Use base MVA of 30MVA and base kV of 33kV in transmission line side. Ratings of different components are as below: Generator 1: 30 MVA; 10.5 kV; X"=1.6 ohms Generator 2: 15 MVA; 6.6 kV; X"=1.2 ohms Generator 3: 25 MVA; 6.6 kV; X"=0.56 ohms Transformer 1: 15 MVA; 33/11 kV; X=15.2ohm Transformer 2: 15MVA; 33/6.2 kV; X=16 ohms Transmission line: 20.5 ohms/phase	10	4	L-3	1.3.1

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

RE - EXAMINATION

ODD SEM JANUARY 2020

		T.			
				y year demonstration	
Q5(a)	The line currents in amperes in phases a, b, and c respectively are 500 + j150; 100 - j600 and -300 + j600 referred to the same reference vector. Find the symmetrical component of currents.	10	4	L-2	1.3.1
Q5(b)	Explain the significance of positive, negative and zero sequence components in power system network. Hence derive the equations for symmetrical components of voltages in terms of phase voltages in case of an unbalanced power system.		4	L-2	1.3.1
Q6(a)	Derive the necessary equation to determine the fault current with fault impedance Z_f for a single line to ground fault occurring at the terminals of an unloaded alternator with it's neutral grounded through neutral impedance Z_n . Draw a diagram showing interconnection of sequence networks.	08	4	L-3	1.3.1
Q6(b)	A 25MVA, 13.2 kV alternator with solidly grounded neutral has a sub transient reactance of 0.25 p.u. The negative and zero sequence reactances are 0.35 p.u. and 0.1 p.u. respectively. Determine the fault current and the line to line voltages at the fault when a double line to ground fault occurs at the terminals of the alternator.	10	4	L-2	1.3.1
Q 7 (a) (b) (c) (d) (e) (f)	Write short notes on the following. (Any Five) The concept of National Grid. What is corona? How to reduce corona loss? Surge Impedance Loading. Tap changing in Transformers. Neutral Grounding. Design of tower footing resistance.	(4 X 5) =20	1 2 3 4 3 5	L-3	1.3.1

Sardar Patel College of Engineering

(Govt. Aided Autonomous Institute Affiliated to University of Mumbai)

Re-examination [January 2020] Academic Year 2019 – 20 [First Half]

Program: B. Tech. Electrical Engineering

Course: Digital Signal Processing Course Code: PE -BTE501 Semester: V

Date: 13th Jan 2020 Total Points: 100

Note: Solve any FIVE questions of the following. Write answers of all sub-questions together.

CO: Course Outcomes

BL: Bloom's Taxonomy Level

PI: Performance Indicator

Q	0.	Question	Points	CO	BL	PI
1		Design an analog lowpass filter using Butterworth, Chebyshev and inverse Chebyshev approximation to meet following specifications: $A_p \le 1 \ dB$ for $\Omega_p \le 4 \ rad/s$ and $A_s \ge 20 \ dB$ for $\Omega_s \ge 8 \ rad/s$.	20	4	6	1.6.1
2	A	Design a 4 th order FIR filter, using rectangular window function, to approximate an ideal low-pass filter with passband gain of unity, cut-off frequency of 850 Hz and working at a sampling frequency of 5000 Hz.	10	4	6	1.5.1
	В	Design a linear phase FIR highpass filter using Hanning window function, for the specifications given below: Stopband edge = 2 kHz, Stopband attenuation ≥ 40 dB, Passband edge = 9.5 kHz, Passband attenuation < 1 dB, Sampling frequency = 25 kHz.	10	4	6	1.5.1
3	A	Determine 8-point DFT of the sequence $x(n) = \{1,2,4,8,16,32,64,128\}$ using radix-2 DIT FFT algorithm.	10	3	3	2.5.1
	В	Determine IDFT of the following sequence using radix-2 DIT-FFT algorithm: $X(k) = \begin{cases} 36, -4 + j9.656, -4 + j4, -4 + j1.656, -4, \\ -4 - j1.656, -4 - j4, -4 - j9.656 \end{cases}$	10	3	3	2.5.1
1	A	For the sequences $x_1(n) = \{1,1,2,2\}$ and $x_2(n) = \{1,2,3,4\}$, determine: i. linear convolution ii. circular periodic convolution using DFT / IDFT.	02	3	3	1.5.1

The state of the s	В	Discuss symmetry properties of DFT for a signal with following cases: i. real (even and odd) and ii. purely imaginary (even and odd).	10	2	3	1.5.1
5	A	Determine 8-point DFT of the sequence $x(n) = \begin{cases} 1 & 0 \le n \le 3 \\ 0 & 4 \le n \le 7 \end{cases}$. Using DFT properties only determine, DFT of, $x_1(n) = \begin{cases} 1 & n = 0 \\ 0 & 1 \le n \le 4; \\ 1 & 5 \le n \le 7 \end{cases} \qquad \begin{cases} 0 & 0 \le n \le 1 \\ 1 & 2 \le n \le 5; \\ 0 & 6 \le n \le 7 \end{cases}$ Determine linear convolution of the following signals using convolution property of DTFT.				
		$x_1(n) = nu(n)$ and $x_2(n) = (2)^n u(n-1)$.				
6	A	Derive the bilinear z-transformation mapping of s-plane poles and zeros into z-plane poles and zeros. Discuss the advantages and drawbacks of this mapping.	10	4	6	1.6.1
	В	A simple LRC notch filter has following normalized, s-plane transfer function:	10	4	6	1.6.1
		$H(s) = \frac{s^2 + 1}{s^2 + s + 1}$ Determine the transfer function of an equivalent digital filter using BLT. Assume a notch frequency of 60 Hz and sampling frequency of 960 Hz				<u> </u>
7	A	Using frequency sampling method calculate the coefficients and draw realization diagram of a linear-phase FIR filter of length 15 which has a symmetric unit sample response and a frequency response that satisfies the condition, $H\left(\frac{2\pi k}{15}\right) = \begin{cases} 1, & k = 0,1,2,3\\ 0.4, & k = 4\\ 0, & k = 5,6,7 \end{cases}$	10	4	3	1.5.1
	В	A causal system is represented by the following difference equation. $y(n) + \frac{1}{4}y(n-1) = x(n) + \frac{1}{2}x(n-1)$ Determine the system transfer function, impulse response and frequency response of the system. Show the magnitude and phase functions clearly.	10	2	3	1.5.1

Chovernment Yickel Xinonomous Institute Munshi Napar Andheri (W. Klumbar - 100058)

Re Bxamination - Jan. 2020 Examinations

Program: T.Y. B.Fech.(Electrical)

Course Code: PC-BTE502

Course Name: Control System

Duration Three Hour

Maximum Points: 100

Semester: V

Notes:

1. Question No 1 is compulsory

2 Attempt any four questions out of remaining as:

2. Draw neat diagrams.

3. Assume suitable data if necessary

Q.No.	Questions	Points	('()	BL	Land of
1. A	Define/describe in brief the following terms: 1. Transfer Function in time domain 2. Show Gain Margin and Phase Margin through Bode Plot (Note No need to write definition separately) 3. Write State and Output Equation with dimensions. 4. Bandwidth and Cut off rate. 5. BIBO and Asymptotic Notion of Stability 6. Acceleration Error Constant and Relative Stability Note: Please define precisely and briefly, Excessive unnecessary writing carries no marks.	12			
1. B	Open loop transfer function of a unity feedback system is $G(s) = \frac{K}{s^3(s+20)}$ By sketching Bode plot, show that the system is unstable for all values of gain K.	08			
2. A	For the block diagram shown in Fig.1, determine C/R.	10			
2. B	Define the following terms in context of root locus a. Root Locus. b. Breakaway points c. Angle of Departure and Angle of Arrival d. Asymptotes and Centroid e. Angle and magnitude criterion (write only expressions). f. Write (only) Magnitude criterion.	06			

BharatiyaVidyaBhay m

SARDAR PATEL COLLEGE OF ENGINEERING

Munshi Majar, Andher (W.) Mumbar - 1000 s8

Re Ekamination - Jan. 2020 Examinations

2. (Determine if following systems are stable or unstable $G(s) = \frac{1}{s-and} - G(s) = \frac{1}{s-1}$	04
3.A.	Derive an expression for peak overshoot for a typical second order system for unit step input.	10
3.B.	When the system shown in Fig. 2. Is subjected to the unit step input, the system output responds as shown in Fig. 3. Determine the values of K and T from the response curve.	1()
Manufacture of the second seco	Consider the armature controlled d.c. motor shown in Fig.4. In this system,	
	R _a - Resistance of Armature (ohm)	
	L _a - inductance of armature winding (H)	
	i _a - armature current (A)	
	i ₁ - field current (A)	
	e _a applied armature voltage (V)	
I.A	e _b - back emf(V)	10
	T _M torque developed by motor (Nm)	10
	Θ angular displacement of motor-shaft (rad)	
	J - equibvlaent moment of inertia of motor and load referred to motor shaft (kg-m²)	
	fo - equivalent viscous friction coefficent of motor and load referred to motor shaft.	
	Derive the transfer function $G(s) = \theta(s)/E_a(s)$ and also draw the	
	complete block diagram for the same.	

Bhaatiya Vidya Bhayan -

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Arded Autonomous Institute) Alumhi agar Andheri (W) Alumba - Dodok

Re Examination Jan. 2020 Examinations

4.B	Consider a unity feedback system with $Ci(s) = \frac{K}{8(N+1)(s-10)}$ which is operating with 20% overshoot. Determine for the closed loop	
	system Dominant pole location using root locus technique	10
5.A	Measurements conducted on a servomechanism shows the system response to be $c(t) \approx 1 \pm 0.2e^{-60t} = 1.2 \ e^{-10t}$ when subjected to sumt step input. Obtain the expression for the closed loop transfer function.	10
5.B	a. Determine the stability of the following transfer function by using Rouths criterion.	
	7101	10
	58+55+1256+255+456+5853+8252+605+84	
	A unity feedback system with forward transfer function	
	$G(s) = \frac{K}{s(s+7)}$	
6.		10+10
	is operating with a closed loop step response that has 15% overshoot. Do the following; a. Evaluate the steady state error for a unit ramp input.	
	b. Design a lag compensator to improve the steady state error by a factor of 20.	
	A unity feedback system with forward transfer function	
	$G(s) = \frac{K}{(s+2)(s+3)(s+7)}$ is operating with 10% overshoot.	
•	What is the value of the appropriate static error constant? Use bode plot	20
į	technique to find the same.	

(Government Aided Autonomous Irratiute Munshi Nagar, Andhers (W.) Mundan - 1000 (8

Re Examination - Jan. 2020 Examinations

Fig. 1

Fig. 1

Fig. 4 Armature Controlled D.C. Motor

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai - 400058

Re-examination

Program: Electrical Engineering

Duration: 3 hrs.

Date: January 2020

Course code: PC-BTE503

Maximum Marks: 100

Semester: V

Course Name: Electrical Machines II

Note: Solve any five questions.

Assume suitable data if required.

Q.	Questions	Poi	Co	BL	PI
No.		nts	No		
1 a.	Explain how the equivalent circuit parameters of a polyphase induction motor can be determined from no load and blocked rotor tests and per phase stator winding dc resistance	08	01	02	1.3.1
b.	Draw the circle diagram from no load and blocked rotor tests of three phase, 15KW, 440 V, six poles induction motor from the following results (line values) No load test: 440V, 15A, pf 0.2 Blocked rotor test: 100V, 30A, pf 0.4 Rotor copper loss at standstill is half the total copper loss. Calculate line current, slip, efficiency and power factor at full load	12	01	03	1.341
2 a.	Why is it not advisable to start wound rotor induction motor by the methods employed for starting squirrel cage induction motor? What are the advantages of inserting external resistance in the rotor circuit of wound rotor induction motor? With a neat diagram explain star delta starter.	10	01	03	1.3.1
b.	A 50 Hz, 440V, three phase, 4 pole induction motor develops half the rated torque at 1490rpm. With the applied voltage magnitude remaining at the rated value, what should be its frequency if the motor has to develop the same torque at 1600 rpm? Neglect stator and rotor winding resistances, leakage reactances and iron losses.	10	01	03	1.4.1
3 a.	Write short note on a> Stepper motor b>Brushless DC motor	10	03	02	1.3.1
b.	A 1100 V, 50 Hz, three phase star connected cylindrical rotor synchronous motor has its synchronous impedance of 0.7+j3.2 ohm per phase. It is working at rated tage and rated frequency with an input of 350KW. The field tent is adjusted to give an electromotive force of 1650V.	10	02	03	1.4.1

	moto	or. \mathbf{D}_1	raw t	orqu	e spec	ed ch	g the aracte hase	eristi	c of t	he sa	me. I	e ind Di <mark>scu</mark>	uction ss any	08	03	02	1.3.1
b.	A 220V, 50Hz, 6 pole star connected alternator with ohmic resistance of 0.06 ohm per phase gave the following data for open circuit, short circuit and full load zero power factor charactristis:									12	02	03	1.4.1				
	I _f	.2	.4	.6	.8	1	1.2	1.4	1.8	2.2	2.6	3	3.4				
	$\mathbf{E_f}$	29	58	87	11 6	14	17 2	19 4	23 2	26 1	28	30	31				
	Isc A	6.6	13	20	26	32	40	46	59		-						
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\						0	29	88	14	17 7	20 8	23				
	Find factor	% v	oltag 8 lag	e reg	ulatio > EM	n at F met	full	load h> 71	curre	nt of	40A	at p	ower				
5 a.	Expla	in ho	ow th	e exci	itatio	n and	pow	er cir	cles c	can be	e sup	erim _j	posed	10	02	02	1.4.1
5 a.		nin ho tain V	ow the	e exci	itation a cyli	n and	power	er cir	cles o	can be	e sup	erim or cepts			02	02	1.4.1
	Expla to obt	e sy roniz	ow the curve of curve	e excives of conizing ower.	tation a cyling	n and indric	power power.	er cir tor sy Give	phys	can be	e sup moto	cepts	of				
	Explato obt Defin synch Expla	e syroniz in the ronouter factor ree pronize in the interior receives the ronouter factor receives the receive factor receives the receiver factor rec	ow the very curve ing point in the two series may be considered with now in the construction of the constr	e excives of conizing ower.	eaction when the control of the cont	n and ndrice power on the draw draw $X_d = 0$	neory w its	er circler sy Give as phase ted seated ft loan n per losse	physical phy	ed to agran	e supermotor con salar for is many $X_q = 500W$	ient a lag achir achir ce mace	pole gging le is nous chine ohm	10	02	02	1.3.1
b. 6 a. b.	Expla to obto Defin synch Expla synch power A through machine resistate per ph	e syroniz in the ronouter factor receive in the ronouter fact	ow the very curve of the control of	e excives of ronizing ower. Vo reaching than made digible on, with the reaching of the reachi	eaction a cyling eaction with the and infinite eaction and indag power trance	powe on the draw draw liver X _d =: e and of sy	neory w its	er cirtor sy Give as phase ted seated ft loan losse matu onous	physical phy	ed to agran ronou ge. The object the rent, rent,	con o sala for is m ne syn /. The Soow power	ient a lag achir ichro e mac = 3.2 V.For er fac	pole gging le is nous chine ohm this ctor,	10	02	02	1.3.1
b. 6 a.	Expla to obto Defin synch Expla synch power A through the resistant per physhaft of Company and the resistant company the resistant	e syroniz in the ronor factoree pronize ne is ince i.	ow the vector of the calcular	e excives of conizinower. vo reaching 400° th an made ligible on, with ulate rform an ection,	eaction a cyling eaction a mande and infinite eaction and independent eaction	power on the draw liver $X_d = 0$ and of system all ciple	neory wits onneces at rasha 5 ohn core de, ar	er cirtor sy Give as phase ted s rated ft loa per losse matu onous tor op	physical phy	ean boonous sical ed to agram ronou ge. The observation of the contract of the	con con sala for X _q = 500W power r con its ov	ient a lag achir achir chro e mac = 3.2 V.For er fac mecte wn lo	pole gging le is nous chine ohm this ctor, d to ad.	08	02	02	1.3.1
b. 6 a.	Explato obto Defin synch Explate synch power A through the resistation of the companies of	e syroniz in the ronour factor ree pronize in ase. Foutpur are the nite by some or the ronour factor in the second record	ow the very curve of the calcular calcular can calcular can can calcular ca	e excives of conizing ower. vo reaching the an made ligible on, with an indication, et syr	eaction eaction eaction to de eand indag power isolate principal control in the c	power of system and side but any of system and side and s	power cal roter. (Conserved in the core called in t	as phase ted stated ft loan losse maturonous tor operate	physical phy	ean boonous sical ed to agram ronou ge. The observation of the contract of the	con con sala for X _q = 500W power r con its ov	ient a lag achir achir chro e mac = 3.2 V.For er fac mecte wn lo	pole gging le is nous chine ohm this ctor, d to ad.	10 08 12	02	02	1.3.1

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

RE Exam – January 2020 Examinations

Program: Electrical

Course Code: PE-BTE502

Course Name: Computer Architecture

Duration: 3 hours

Maximum Points: 100

Semester: V

Attempt any 5 questions from the given 7 questions.

Make suitable assumptions wherever necessary.

	Questions	-			
la.	What is dynamic branch prediction?	Points	CO	B	L P
	and 2 bit predictor methods are used for dynamic branch prediction.	10	1	2	
16.	Discuss the architecture and function of a general				
	computer system.	10	2	2	1.4.
2a.	I. Solve $(0111)_2 / (11)_2$ using the restoration division				
	algorithm. II. Solve (0.1011*2²) - (0.1101*2⁻¹) using floating	06	2	3	2.1.3
	point attinnetic.	04			
2b.	Explain the working of magnetic hard disk. Explain what is a bad sector? Also discuss h				
2	resolution of the calculated?	10	1	2	1.4.1
3.	Discuss the following architectures	20			
-	i. MIPS	20	3	2	1.4.1
	ii. VLIW				
la. I	Differentiate between serial bus and parallel bus used for				
C	Of interface w.r.t. advantages and disadvantages of each of them. (Take suitable example to explain the lifference).	10	2	5	2.2.4
b. E	Explain the terms w.r.t. pipeline.				
	Speed up ratio	10	2	2	1.4.1
	Throughput Clock frequency				

Binnarya Vidya Bhaxan

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

RE Exam - January 2020 Examinations

5a.	Compare the mode archite					d	10	3	5	1.4.1
5b.	Consider a 4 stage pipeline processor. The number of cycles needed by the four instructions I1, I2, I3 and I4 in the stages S1, S2, S3 and S4 is shown below:							1	4	1.3.1
		S1	S2	S3	S4					
	11	3	1	1	1					
	12	1	4	2	2					
	13	1	1	1	3					
	I4	1	3	2	2					
6a.	The size of d bits. The prockilobytes from addressable.	essor need n disk to th The minim	s to trans ne memor um no. of	fer a file o y. The me times the	f 29,154 mory is by DMA	te	05	1	3	2.3.1
	controller needs to get control of the system bus from the Processor for transfer is									
	(Assumption completes tra	nsfer of all			-					
6b.	Give the med address trans address.		_	_	_		10	1	2	1.4.1

Bharatiya Vilva Milwan s

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai –400058

RE Exam – January 2020 Examinations

6c.	For a Magnetic Disk:	05				_
	No. of tracks per surface = 250 Disk rotation speed = 3000 rpm Track storage capacity = 62,500 bits Average latency of device = P ms Data transfer rate = Q bits/sec	03	2		3	2.4.
	Find P and Q.				ĺ	
7a.	On a non piplelined processor a program segment which is a					
	memory	05	1		6	2.2.4
	Initialize the address register Initialize the count to 500 Loop: Load a byte from device					
	Loop: Load a byte from device Store in memory at address given by address reg. Decrement the address reg.					
	Decrement the count If count ≠0, goto Loop					
	Load and store instructions take 2 clock cycles and other instructions 1 clock cycle.					
	DMA can also implement the same transfer. DMA takes 20 clock cycles and 10 clock cycles to initiate and complete DMA transfers and 2ns to transfer 1 byte of data from device to					
//ii=	memory. Calculate the approx. speed up ratio between DMA transfers and interrupt driven transfer of data. (Assume 1 clock cycle is of 1ns.)					
b.	Calculate the pointer address for LDT descriptor for the 32 bit	0.5				
	processor from the following data: a. GDTR = 100000000000h b. LDTR Selector = F002h	05	1	3	2	2.4.1
c.	Classify the system memory with respect to the closeness	10	1,2	4	1	4.1
	to the process with neat diagram and explain each component.	. 0	1,2	4	1.	.4.1

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

REEXAMINATION JAN. 2020 (OLD COURSE)

Progra	tion: 3	on: 3 HOURS						
Cours	e Code: BTE306 Maxi	mum P	um Points: 100					
Cours	e Name: POWER ELECTRONICS Seme	ster: V						
Instru	ctions:							
•	Solve any five questions Assume suitable data if necessary and justify the same							
SN	Questions	Po int s		B L	PI			
Q1) a)	What are the different operating regions of Silicon Controlled Rectifier (SCR)? Explain with neat (V-I characteristic diagram.		2	3	1.3.			
b)	Explain the application of inverter in power facto improvement, with circuit diagram.	r 8	2	3	1.3.			
c)	What is natural or line commutation in rectifiers?	4	4	3	1.3.			
Q2) a)	Write short note on any of the <u>fully controlled</u> power electronics switch using following points (a) Principle of operation, (b) characteristics, (c) rating (d) applications		2	2	1.3.			
b)	Discuss the working of a single phase AC voltage controlle with R-L load when its firing angle is more than the load powe factor angle. Illustrate with waveforms.	r 8 r	4	2	1.3.			
Q3) a)	Derive expression of average dc voltage for the three phase fu wave controlled rectifier. Assume load current is continuous a constant.		2	2				
b)	Explain the effect of source side inductance on three phase and single phase rectifier output.	10	2	2				

Q4) Draw circuit diagram (3M), output phase voltages (3M), 20 4 1.3.1 output line voltages (3M), output line currents (3M) and input voltage (2M) of voltage source inverter with star connected R load when each semiconductor switch conducts for 180°. Derive the phase and line voltages by considering load R=1 Ω (6M). (use graph paper for input and output voltage waveforms, line current waveforms should be drawn on answer sheet) O5) Draw input voltage, output voltage, input current and output current waveforms for the following circuits. a) Single phase full wave bridge controlled rectifier with 2 1.3.1 3 α=1200 for "RLE" continuous current load and derive average output voltage b) Single phase full wave bridge controlled rectifier with 2 RLE load, $\alpha > \theta$ and $\beta < \pi$ 4 c) Single phase full bridge type inverter with "L" load d) Single phase half wave controlled rectifier with 'R-L' load and freewheeling diode connected across load, 2 derive average output voltage Q6) With the help of input voltage, output voltage, voltage across 3 3 1.3.1 inductor, voltage across capacitor, capacitor current, inductor a) current, load current waveforms and assumptions made, derive critical L and critical C of the DC-DC Buck regulator. 4 2 Compare CSI and VSI. 1.3.1 b) 1.3.1 O7) Why filters are required when power electronics devices are 8 used? Which filters are used? a) Write short note on 'Sinusoidal triangular pulse width 12 4 1.3.1 **b**) modulation scheme for inverter firing.